summaryrefslogtreecommitdiff
path: root/include/cglm/vec3.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/cglm/vec3.h')
-rw-r--r--include/cglm/vec3.h1277
1 files changed, 1277 insertions, 0 deletions
diff --git a/include/cglm/vec3.h b/include/cglm/vec3.h
new file mode 100644
index 0000000..5667e3e
--- /dev/null
+++ b/include/cglm/vec3.h
@@ -0,0 +1,1277 @@
+/*
+ * Copyright (c), Recep Aslantas.
+ *
+ * MIT License (MIT), http://opensource.org/licenses/MIT
+ * Full license can be found in the LICENSE file
+ */
+
+/*
+ Macros:
+ GLM_VEC3_ONE_INIT
+ GLM_VEC3_ZERO_INIT
+ GLM_VEC3_ONE
+ GLM_VEC3_ZERO
+ GLM_YUP
+ GLM_ZUP
+ GLM_XUP
+
+ Functions:
+ CGLM_INLINE void glm_vec3(vec4 v4, vec3 dest);
+ CGLM_INLINE void glm_vec3_copy(vec3 a, vec3 dest);
+ CGLM_INLINE void glm_vec3_zero(vec3 v);
+ CGLM_INLINE void glm_vec3_one(vec3 v);
+ CGLM_INLINE float glm_vec3_dot(vec3 a, vec3 b);
+ CGLM_INLINE float glm_vec3_norm2(vec3 v);
+ CGLM_INLINE float glm_vec3_norm(vec3 v);
+ CGLM_INLINE float glm_vec3_norm_one(vec3 v);
+ CGLM_INLINE float glm_vec3_norm_inf(vec3 v);
+ CGLM_INLINE void glm_vec3_add(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_adds(vec3 a, float s, vec3 dest);
+ CGLM_INLINE void glm_vec3_sub(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_subs(vec3 a, float s, vec3 dest);
+ CGLM_INLINE void glm_vec3_mul(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_scale(vec3 v, float s, vec3 dest);
+ CGLM_INLINE void glm_vec3_scale_as(vec3 v, float s, vec3 dest);
+ CGLM_INLINE void glm_vec3_div(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_divs(vec3 a, float s, vec3 dest);
+ CGLM_INLINE void glm_vec3_addadd(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_subadd(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_muladd(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_muladds(vec3 a, float s, vec3 dest);
+ CGLM_INLINE void glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_minadd(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_subsub(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_addsub(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_mulsub(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_mulsubs(vec3 a, float s, vec3 dest);
+ CGLM_INLINE void glm_vec3_maxsub(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_minsub(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_flipsign(vec3 v);
+ CGLM_INLINE void glm_vec3_flipsign_to(vec3 v, vec3 dest);
+ CGLM_INLINE void glm_vec3_negate_to(vec3 v, vec3 dest);
+ CGLM_INLINE void glm_vec3_negate(vec3 v);
+ CGLM_INLINE void glm_vec3_inv(vec3 v);
+ CGLM_INLINE void glm_vec3_inv_to(vec3 v, vec3 dest);
+ CGLM_INLINE void glm_vec3_normalize(vec3 v);
+ CGLM_INLINE void glm_vec3_normalize_to(vec3 v, vec3 dest);
+ CGLM_INLINE void glm_vec3_cross(vec3 a, vec3 b, vec3 d);
+ CGLM_INLINE void glm_vec3_crossn(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE float glm_vec3_angle(vec3 a, vec3 b);
+ CGLM_INLINE void glm_vec3_rotate(vec3 v, float angle, vec3 axis);
+ CGLM_INLINE void glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest);
+ CGLM_INLINE void glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest);
+ CGLM_INLINE void glm_vec3_proj(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_center(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE float glm_vec3_distance(vec3 a, vec3 b);
+ CGLM_INLINE float glm_vec3_distance2(vec3 a, vec3 b);
+ CGLM_INLINE void glm_vec3_maxv(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_minv(vec3 a, vec3 b, vec3 dest);
+ CGLM_INLINE void glm_vec3_ortho(vec3 v, vec3 dest);
+ CGLM_INLINE void glm_vec3_clamp(vec3 v, float minVal, float maxVal);
+ CGLM_INLINE void glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest);
+ CGLM_INLINE void glm_vec3_lerpc(vec3 from, vec3 to, float t, vec3 dest);
+ CGLM_INLINE void glm_vec3_mix(vec3 from, vec3 to, float t, vec3 dest);
+ CGLM_INLINE void glm_vec3_mixc(vec3 from, vec3 to, float t, vec3 dest);
+ CGLM_INLINE void glm_vec3_step(vec3 edge, vec3 x, vec3 dest);
+ CGLM_INLINE void glm_vec3_smoothstep_uni(float edge0, float edge1, vec3 x, vec3 dest);
+ CGLM_INLINE void glm_vec3_smoothstep(vec3 edge0, vec3 edge1, vec3 x, vec3 dest);
+ CGLM_INLINE void glm_vec3_smoothinterp(vec3 from, vec3 to, float t, vec3 dest);
+ CGLM_INLINE void glm_vec3_smoothinterpc(vec3 from, vec3 to, float t, vec3 dest);
+ CGLM_INLINE void glm_vec3_swizzle(vec3 v, int mask, vec3 dest);
+ CGLM_INLINE void glm_vec3_make(float * restrict src, vec3 dest);
+ CGLM_INLINE void glm_vec3_faceforward(vec3 n, vec3 v, vec3 nref, vec3 dest);
+ CGLM_INLINE void glm_vec3_reflect(vec3 v, vec3 n, vec3 dest);
+ CGLM_INLINE void glm_vec3_refract(vec3 v, vec3 n, float eta, vec3 dest);
+ CGLM_INLINE void glm_vec3_swap(vec3 a, vec3 b)
+
+ Convenient:
+ CGLM_INLINE void glm_cross(vec3 a, vec3 b, vec3 d);
+ CGLM_INLINE float glm_dot(vec3 a, vec3 b);
+ CGLM_INLINE void glm_normalize(vec3 v);
+ CGLM_INLINE void glm_normalize_to(vec3 v, vec3 dest);
+
+ DEPRECATED:
+ glm_vec3_dup
+ glm_vec3_flipsign
+ glm_vec3_flipsign_to
+ glm_vec3_inv
+ glm_vec3_inv_to
+ glm_vec3_mulv
+ glm_vec3_step_uni --> use glm_vec3_steps
+ */
+
+#ifndef cglm_vec3_h
+#define cglm_vec3_h
+
+#include "common.h"
+#include "vec4.h"
+#include "vec3-ext.h"
+#include "util.h"
+
+/* DEPRECATED! use _copy, _ucopy versions */
+#define glm_vec3_dup(v, dest) glm_vec3_copy(v, dest)
+#define glm_vec3_flipsign(v) glm_vec3_negate(v)
+#define glm_vec3_flipsign_to(v, dest) glm_vec3_negate_to(v, dest)
+#define glm_vec3_inv(v) glm_vec3_negate(v)
+#define glm_vec3_inv_to(v, dest) glm_vec3_negate_to(v, dest)
+#define glm_vec3_mulv(a, b, d) glm_vec3_mul(a, b, d)
+#define glm_vec3_step_uni(edge, x, dest) glm_vec3_steps(edge, x, dest)
+
+#define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
+#define GLM_VEC3_ZERO_INIT {0.0f, 0.0f, 0.0f}
+
+#define GLM_VEC3_ONE ((vec3)GLM_VEC3_ONE_INIT)
+#define GLM_VEC3_ZERO ((vec3)GLM_VEC3_ZERO_INIT)
+
+#define GLM_YUP ((vec3){0.0f, 1.0f, 0.0f})
+#define GLM_ZUP ((vec3){0.0f, 0.0f, 1.0f})
+#define GLM_XUP ((vec3){1.0f, 0.0f, 0.0f})
+#define GLM_FORWARD ((vec3){0.0f, 0.0f, -1.0f})
+
+#define GLM_XXX GLM_SHUFFLE3(0, 0, 0)
+#define GLM_YYY GLM_SHUFFLE3(1, 1, 1)
+#define GLM_ZZZ GLM_SHUFFLE3(2, 2, 2)
+#define GLM_ZYX GLM_SHUFFLE3(0, 1, 2)
+
+/*!
+ * @brief init vec3 using vec4
+ *
+ * @param[in] v4 vector4
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3(vec4 v4, vec3 dest) {
+ dest[0] = v4[0];
+ dest[1] = v4[1];
+ dest[2] = v4[2];
+}
+
+/*!
+ * @brief copy all members of [a] to [dest]
+ *
+ * @param[in] a source
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_copy(vec3 a, vec3 dest) {
+ dest[0] = a[0];
+ dest[1] = a[1];
+ dest[2] = a[2];
+}
+
+/*!
+ * @brief make vector zero
+ *
+ * @param[in, out] v vector
+ */
+CGLM_INLINE
+void
+glm_vec3_zero(vec3 v) {
+ v[0] = v[1] = v[2] = 0.0f;
+}
+
+/*!
+ * @brief make vector one
+ *
+ * @param[in, out] v vector
+ */
+CGLM_INLINE
+void
+glm_vec3_one(vec3 v) {
+ v[0] = v[1] = v[2] = 1.0f;
+}
+
+/*!
+ * @brief vec3 dot product
+ *
+ * @param[in] a vector1
+ * @param[in] b vector2
+ *
+ * @return dot product
+ */
+CGLM_INLINE
+float
+glm_vec3_dot(vec3 a, vec3 b) {
+ return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
+}
+
+/*!
+ * @brief norm * norm (magnitude) of vec
+ *
+ * we can use this func instead of calling norm * norm, because it would call
+ * sqrtf function twice but with this func we can avoid func call, maybe this is
+ * not good name for this func
+ *
+ * @param[in] v vector
+ *
+ * @return norm * norm
+ */
+CGLM_INLINE
+float
+glm_vec3_norm2(vec3 v) {
+ return glm_vec3_dot(v, v);
+}
+
+/*!
+ * @brief euclidean norm (magnitude), also called L2 norm
+ * this will give magnitude of vector in euclidean space
+ *
+ * @param[in] v vector
+ *
+ * @return norm
+ */
+CGLM_INLINE
+float
+glm_vec3_norm(vec3 v) {
+ return sqrtf(glm_vec3_norm2(v));
+}
+
+/*!
+ * @brief L1 norm of vec3
+ * Also known as Manhattan Distance or Taxicab norm.
+ * L1 Norm is the sum of the magnitudes of the vectors in a space.
+ * It is calculated as the sum of the absolute values of the vector components.
+ * In this norm, all the components of the vector are weighted equally.
+ *
+ * This computes:
+ * R = |v[0]| + |v[1]| + |v[2]|
+ *
+ * @param[in] v vector
+ *
+ * @return L1 norm
+ */
+CGLM_INLINE
+float
+glm_vec3_norm_one(vec3 v) {
+ vec3 t;
+ glm_vec3_abs(v, t);
+ return glm_vec3_hadd(t);
+}
+
+/*!
+ * @brief infinity norm of vec3
+ * Also known as Maximum norm.
+ * Infinity Norm is the largest magnitude among each element of a vector.
+ * It is calculated as the maximum of the absolute values of the vector components.
+ *
+ * This computes:
+ * inf norm = max(|v[0]|, |v[1]|, |v[2]|)
+ *
+ * @param[in] v vector
+ *
+ * @return infinity norm
+ */
+CGLM_INLINE
+float
+glm_vec3_norm_inf(vec3 v) {
+ vec3 t;
+ glm_vec3_abs(v, t);
+ return glm_vec3_max(t);
+}
+
+/*!
+ * @brief add a vector to b vector store result in dest
+ *
+ * @param[in] a vector1
+ * @param[in] b vector2
+ * @param[out] dest destination vector
+ */
+CGLM_INLINE
+void
+glm_vec3_add(vec3 a, vec3 b, vec3 dest) {
+ dest[0] = a[0] + b[0];
+ dest[1] = a[1] + b[1];
+ dest[2] = a[2] + b[2];
+}
+
+/*!
+ * @brief add scalar to v vector store result in dest (d = v + s)
+ *
+ * @param[in] v vector
+ * @param[in] s scalar
+ * @param[out] dest destination vector
+ */
+CGLM_INLINE
+void
+glm_vec3_adds(vec3 v, float s, vec3 dest) {
+ dest[0] = v[0] + s;
+ dest[1] = v[1] + s;
+ dest[2] = v[2] + s;
+}
+
+/*!
+ * @brief subtract b vector from a vector store result in dest
+ *
+ * @param[in] a vector1
+ * @param[in] b vector2
+ * @param[out] dest destination vector
+ */
+CGLM_INLINE
+void
+glm_vec3_sub(vec3 a, vec3 b, vec3 dest) {
+ dest[0] = a[0] - b[0];
+ dest[1] = a[1] - b[1];
+ dest[2] = a[2] - b[2];
+}
+
+/*!
+ * @brief subtract scalar from v vector store result in dest (d = v - s)
+ *
+ * @param[in] v vector
+ * @param[in] s scalar
+ * @param[out] dest destination vector
+ */
+CGLM_INLINE
+void
+glm_vec3_subs(vec3 v, float s, vec3 dest) {
+ dest[0] = v[0] - s;
+ dest[1] = v[1] - s;
+ dest[2] = v[2] - s;
+}
+
+/*!
+ * @brief multiply two vectors (component-wise multiplication)
+ *
+ * @param a vector1
+ * @param b vector2
+ * @param dest v3 = (a[0] * b[0], a[1] * b[1], a[2] * b[2])
+ */
+CGLM_INLINE
+void
+glm_vec3_mul(vec3 a, vec3 b, vec3 dest) {
+ dest[0] = a[0] * b[0];
+ dest[1] = a[1] * b[1];
+ dest[2] = a[2] * b[2];
+}
+
+/*!
+ * @brief multiply/scale vec3 vector with scalar: result = v * s
+ *
+ * @param[in] v vector
+ * @param[in] s scalar
+ * @param[out] dest destination vector
+ */
+CGLM_INLINE
+void
+glm_vec3_scale(vec3 v, float s, vec3 dest) {
+ dest[0] = v[0] * s;
+ dest[1] = v[1] * s;
+ dest[2] = v[2] * s;
+}
+
+/*!
+ * @brief make vec3 vector scale as specified: result = unit(v) * s
+ *
+ * @param[in] v vector
+ * @param[in] s scalar
+ * @param[out] dest destination vector
+ */
+CGLM_INLINE
+void
+glm_vec3_scale_as(vec3 v, float s, vec3 dest) {
+ float norm;
+ norm = glm_vec3_norm(v);
+
+ if (CGLM_UNLIKELY(norm < FLT_EPSILON)) {
+ glm_vec3_zero(dest);
+ return;
+ }
+
+ glm_vec3_scale(v, s / norm, dest);
+}
+
+/*!
+ * @brief div vector with another component-wise division: d = a / b
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2])
+ */
+CGLM_INLINE
+void
+glm_vec3_div(vec3 a, vec3 b, vec3 dest) {
+ dest[0] = a[0] / b[0];
+ dest[1] = a[1] / b[1];
+ dest[2] = a[2] / b[2];
+}
+
+/*!
+ * @brief div vector with scalar: d = v / s
+ *
+ * @param[in] v vector
+ * @param[in] s scalar
+ * @param[out] dest result = (a[0]/s, a[1]/s, a[2]/s)
+ */
+CGLM_INLINE
+void
+glm_vec3_divs(vec3 v, float s, vec3 dest) {
+ dest[0] = v[0] / s;
+ dest[1] = v[1] / s;
+ dest[2] = v[2] / s;
+}
+
+/*!
+ * @brief add two vectors and add result to sum
+ *
+ * it applies += operator so dest must be initialized
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest dest += (a + b)
+ */
+CGLM_INLINE
+void
+glm_vec3_addadd(vec3 a, vec3 b, vec3 dest) {
+ dest[0] += a[0] + b[0];
+ dest[1] += a[1] + b[1];
+ dest[2] += a[2] + b[2];
+}
+
+/*!
+ * @brief sub two vectors and add result to dest
+ *
+ * it applies += operator so dest must be initialized
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest dest += (a + b)
+ */
+CGLM_INLINE
+void
+glm_vec3_subadd(vec3 a, vec3 b, vec3 dest) {
+ dest[0] += a[0] - b[0];
+ dest[1] += a[1] - b[1];
+ dest[2] += a[2] - b[2];
+}
+
+/*!
+ * @brief mul two vectors and add result to dest
+ *
+ * it applies += operator so dest must be initialized
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest dest += (a * b)
+ */
+CGLM_INLINE
+void
+glm_vec3_muladd(vec3 a, vec3 b, vec3 dest) {
+ dest[0] += a[0] * b[0];
+ dest[1] += a[1] * b[1];
+ dest[2] += a[2] * b[2];
+}
+
+/*!
+ * @brief mul vector with scalar and add result to sum
+ *
+ * it applies += operator so dest must be initialized
+ *
+ * @param[in] a vector
+ * @param[in] s scalar
+ * @param[out] dest dest += (a * b)
+ */
+CGLM_INLINE
+void
+glm_vec3_muladds(vec3 a, float s, vec3 dest) {
+ dest[0] += a[0] * s;
+ dest[1] += a[1] * s;
+ dest[2] += a[2] * s;
+}
+
+/*!
+ * @brief add max of two vectors to result/dest
+ *
+ * it applies += operator so dest must be initialized
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest dest += max(a, b)
+ */
+CGLM_INLINE
+void
+glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest) {
+ dest[0] += glm_max(a[0], b[0]);
+ dest[1] += glm_max(a[1], b[1]);
+ dest[2] += glm_max(a[2], b[2]);
+}
+
+/*!
+ * @brief add min of two vectors to result/dest
+ *
+ * it applies += operator so dest must be initialized
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest dest += min(a, b)
+ */
+CGLM_INLINE
+void
+glm_vec3_minadd(vec3 a, vec3 b, vec3 dest) {
+ dest[0] += glm_min(a[0], b[0]);
+ dest[1] += glm_min(a[1], b[1]);
+ dest[2] += glm_min(a[2], b[2]);
+}
+
+/*!
+ * @brief sub two vectors and sub result to dest
+ *
+ * it applies += operator so dest must be initialized
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest dest -= (a - b)
+ */
+CGLM_INLINE
+void
+glm_vec3_subsub(vec3 a, vec3 b, vec3 dest) {
+ dest[0] -= a[0] - b[0];
+ dest[1] -= a[1] - b[1];
+ dest[2] -= a[2] - b[2];
+}
+
+/*!
+ * @brief add two vectors and sub result to dest
+ *
+ * it applies += operator so dest must be initialized
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest dest -= (a + b)
+ */
+CGLM_INLINE
+void
+glm_vec3_addsub(vec3 a, vec3 b, vec3 dest) {
+ dest[0] -= a[0] + b[0];
+ dest[1] -= a[1] + b[1];
+ dest[2] -= a[2] + b[2];
+}
+
+/*!
+ * @brief mul two vectors and sub result to dest
+ *
+ * it applies -= operator so dest must be initialized
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest dest -= (a * b)
+ */
+CGLM_INLINE
+void
+glm_vec3_mulsub(vec3 a, vec3 b, vec3 dest) {
+ dest[0] -= a[0] * b[0];
+ dest[1] -= a[1] * b[1];
+ dest[2] -= a[2] * b[2];
+}
+
+/*!
+ * @brief mul vector with scalar and sub result to dest
+ *
+ * it applies -= operator so dest must be initialized
+ *
+ * @param[in] a vector
+ * @param[in] s scalar
+ * @param[out] dest dest -= (a * b)
+ */
+CGLM_INLINE
+void
+glm_vec3_mulsubs(vec3 a, float s, vec3 dest) {
+ dest[0] -= a[0] * s;
+ dest[1] -= a[1] * s;
+ dest[2] -= a[2] * s;
+}
+
+/*!
+ * @brief sub max of two vectors to result/dest
+ *
+ * it applies -= operator so dest must be initialized
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest dest -= max(a, b)
+ */
+CGLM_INLINE
+void
+glm_vec3_maxsub(vec3 a, vec3 b, vec3 dest) {
+ dest[0] -= glm_max(a[0], b[0]);
+ dest[1] -= glm_max(a[1], b[1]);
+ dest[2] -= glm_max(a[2], b[2]);
+}
+
+/*!
+ * @brief sub min of two vectors to result/dest
+ *
+ * it applies -= operator so dest must be initialized
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest dest -= min(a, b)
+ */
+CGLM_INLINE
+void
+glm_vec3_minsub(vec3 a, vec3 b, vec3 dest) {
+ dest[0] -= glm_min(a[0], b[0]);
+ dest[1] -= glm_min(a[1], b[1]);
+ dest[2] -= glm_min(a[2], b[2]);
+}
+
+/*!
+ * @brief negate vector components and store result in dest
+ *
+ * @param[in] v vector
+ * @param[out] dest result vector
+ */
+CGLM_INLINE
+void
+glm_vec3_negate_to(vec3 v, vec3 dest) {
+ dest[0] = -v[0];
+ dest[1] = -v[1];
+ dest[2] = -v[2];
+}
+
+/*!
+ * @brief negate vector components
+ *
+ * @param[in, out] v vector
+ */
+CGLM_INLINE
+void
+glm_vec3_negate(vec3 v) {
+ glm_vec3_negate_to(v, v);
+}
+
+/*!
+ * @brief normalize vec3 and store result in same vec
+ *
+ * @param[in, out] v vector
+ */
+CGLM_INLINE
+void
+glm_vec3_normalize(vec3 v) {
+ float norm;
+
+ norm = glm_vec3_norm(v);
+
+ if (CGLM_UNLIKELY(norm < FLT_EPSILON)) {
+ v[0] = v[1] = v[2] = 0.0f;
+ return;
+ }
+
+ glm_vec3_scale(v, 1.0f / norm, v);
+}
+
+/*!
+ * @brief normalize vec3 to dest
+ *
+ * @param[in] v source
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_normalize_to(vec3 v, vec3 dest) {
+ float norm;
+
+ norm = glm_vec3_norm(v);
+
+ if (CGLM_UNLIKELY(norm < FLT_EPSILON)) {
+ glm_vec3_zero(dest);
+ return;
+ }
+
+ glm_vec3_scale(v, 1.0f / norm, dest);
+}
+
+/*!
+ * @brief cross product of two vector (RH)
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_cross(vec3 a, vec3 b, vec3 dest) {
+ vec3 c;
+ /* (u2.v3 - u3.v2, u3.v1 - u1.v3, u1.v2 - u2.v1) */
+ c[0] = a[1] * b[2] - a[2] * b[1];
+ c[1] = a[2] * b[0] - a[0] * b[2];
+ c[2] = a[0] * b[1] - a[1] * b[0];
+ glm_vec3_copy(c, dest);
+}
+
+/*!
+ * @brief cross product of two vector (RH) and normalize the result
+ *
+ * @param[in] a vector 1
+ * @param[in] b vector 2
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_crossn(vec3 a, vec3 b, vec3 dest) {
+ glm_vec3_cross(a, b, dest);
+ glm_vec3_normalize(dest);
+}
+
+/*!
+ * @brief angle between two vector
+ *
+ * @param[in] a vector1
+ * @param[in] b vector2
+ *
+ * @return angle as radians
+ */
+CGLM_INLINE
+float
+glm_vec3_angle(vec3 a, vec3 b) {
+ float norm, dot;
+
+ /* maybe compiler generate approximation instruction (rcp) */
+ norm = 1.0f / (glm_vec3_norm(a) * glm_vec3_norm(b));
+ dot = glm_vec3_dot(a, b) * norm;
+
+ if (dot > 1.0f)
+ return 0.0f;
+ else if (dot < -1.0f)
+ return CGLM_PI;
+
+ return acosf(dot);
+}
+
+/*!
+ * @brief rotate vec3 around axis by angle using Rodrigues' rotation formula
+ *
+ * @param[in, out] v vector
+ * @param[in] axis axis vector (must be unit vector)
+ * @param[in] angle angle by radians
+ */
+CGLM_INLINE
+void
+glm_vec3_rotate(vec3 v, float angle, vec3 axis) {
+ vec3 v1, v2, k;
+ float c, s;
+
+ c = cosf(angle);
+ s = sinf(angle);
+
+ glm_vec3_normalize_to(axis, k);
+
+ /* Right Hand, Rodrigues' rotation formula:
+ v = v*cos(t) + (kxv)sin(t) + k*(k.v)(1 - cos(t))
+ */
+ glm_vec3_scale(v, c, v1);
+
+ glm_vec3_cross(k, v, v2);
+ glm_vec3_scale(v2, s, v2);
+
+ glm_vec3_add(v1, v2, v1);
+
+ glm_vec3_scale(k, glm_vec3_dot(k, v) * (1.0f - c), v2);
+ glm_vec3_add(v1, v2, v);
+}
+
+/*!
+ * @brief apply rotation matrix to vector
+ *
+ * matrix format should be (no perspective):
+ * a b c x
+ * e f g y
+ * i j k z
+ * 0 0 0 w
+ *
+ * @param[in] m affine matrix or rot matrix
+ * @param[in] v vector
+ * @param[out] dest rotated vector
+ */
+CGLM_INLINE
+void
+glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest) {
+ vec4 x, y, z, res;
+
+ glm_vec4_normalize_to(m[0], x);
+ glm_vec4_normalize_to(m[1], y);
+ glm_vec4_normalize_to(m[2], z);
+
+ glm_vec4_scale(x, v[0], res);
+ glm_vec4_muladds(y, v[1], res);
+ glm_vec4_muladds(z, v[2], res);
+
+ glm_vec3(res, dest);
+}
+
+/*!
+ * @brief apply rotation matrix to vector
+ *
+ * @param[in] m affine matrix or rot matrix
+ * @param[in] v vector
+ * @param[out] dest rotated vector
+ */
+CGLM_INLINE
+void
+glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest) {
+ vec4 res, x, y, z;
+
+ glm_vec4(m[0], 0.0f, x);
+ glm_vec4(m[1], 0.0f, y);
+ glm_vec4(m[2], 0.0f, z);
+
+ glm_vec4_normalize(x);
+ glm_vec4_normalize(y);
+ glm_vec4_normalize(z);
+
+ glm_vec4_scale(x, v[0], res);
+ glm_vec4_muladds(y, v[1], res);
+ glm_vec4_muladds(z, v[2], res);
+
+ glm_vec3(res, dest);
+}
+
+/*!
+ * @brief project a vector onto b vector
+ *
+ * @param[in] a vector1
+ * @param[in] b vector2
+ * @param[out] dest projected vector
+ */
+CGLM_INLINE
+void
+glm_vec3_proj(vec3 a, vec3 b, vec3 dest) {
+ glm_vec3_scale(b,
+ glm_vec3_dot(a, b) / glm_vec3_norm2(b),
+ dest);
+}
+
+/**
+ * @brief find center point of two vector
+ *
+ * @param[in] a vector1
+ * @param[in] b vector2
+ * @param[out] dest center point
+ */
+CGLM_INLINE
+void
+glm_vec3_center(vec3 a, vec3 b, vec3 dest) {
+ glm_vec3_add(a, b, dest);
+ glm_vec3_scale(dest, 0.5f, dest);
+}
+
+/**
+ * @brief squared distance between two vectors
+ *
+ * @param[in] a vector1
+ * @param[in] b vector2
+ * @return returns squared distance (distance * distance)
+ */
+CGLM_INLINE
+float
+glm_vec3_distance2(vec3 a, vec3 b) {
+ return glm_pow2(a[0] - b[0])
+ + glm_pow2(a[1] - b[1])
+ + glm_pow2(a[2] - b[2]);
+}
+
+/**
+ * @brief distance between two vectors
+ *
+ * @param[in] a vector1
+ * @param[in] b vector2
+ * @return returns distance
+ */
+CGLM_INLINE
+float
+glm_vec3_distance(vec3 a, vec3 b) {
+ return sqrtf(glm_vec3_distance2(a, b));
+}
+
+/*!
+ * @brief max values of vectors
+ *
+ * @param[in] a vector1
+ * @param[in] b vector2
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_maxv(vec3 a, vec3 b, vec3 dest) {
+ dest[0] = glm_max(a[0], b[0]);
+ dest[1] = glm_max(a[1], b[1]);
+ dest[2] = glm_max(a[2], b[2]);
+}
+
+/*!
+ * @brief min values of vectors
+ *
+ * @param[in] a vector1
+ * @param[in] b vector2
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_minv(vec3 a, vec3 b, vec3 dest) {
+ dest[0] = glm_min(a[0], b[0]);
+ dest[1] = glm_min(a[1], b[1]);
+ dest[2] = glm_min(a[2], b[2]);
+}
+
+/*!
+ * @brief possible orthogonal/perpendicular vector
+ *
+ * @param[in] v vector
+ * @param[out] dest orthogonal/perpendicular vector
+ */
+CGLM_INLINE
+void
+glm_vec3_ortho(vec3 v, vec3 dest) {
+ float ignore;
+ float f = modff(fabsf(v[0]) + 0.5f, &ignore);
+ vec3 result = {-v[1], v[0] - f * v[2], f * v[1]};
+ glm_vec3_copy(result, dest);
+}
+
+/*!
+ * @brief clamp vector's individual members between min and max values
+ *
+ * @param[in, out] v vector
+ * @param[in] minVal minimum value
+ * @param[in] maxVal maximum value
+ */
+CGLM_INLINE
+void
+glm_vec3_clamp(vec3 v, float minVal, float maxVal) {
+ v[0] = glm_clamp(v[0], minVal, maxVal);
+ v[1] = glm_clamp(v[1], minVal, maxVal);
+ v[2] = glm_clamp(v[2], minVal, maxVal);
+}
+
+/*!
+ * @brief linear interpolation between two vectors
+ *
+ * formula: from + s * (to - from)
+ *
+ * @param[in] from from value
+ * @param[in] to to value
+ * @param[in] t interpolant (amount)
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest) {
+ vec3 s, v;
+
+ /* from + s * (to - from) */
+ glm_vec3_broadcast(t, s);
+ glm_vec3_sub(to, from, v);
+ glm_vec3_mul(s, v, v);
+ glm_vec3_add(from, v, dest);
+}
+
+/*!
+ * @brief linear interpolation between two vectors (clamped)
+ *
+ * formula: from + s * (to - from)
+ *
+ * @param[in] from from value
+ * @param[in] to to value
+ * @param[in] t interpolant (amount) clamped between 0 and 1
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_lerpc(vec3 from, vec3 to, float t, vec3 dest) {
+ glm_vec3_lerp(from, to, glm_clamp_zo(t), dest);
+}
+
+/*!
+ * @brief linear interpolation between two vectors
+ *
+ * formula: from + s * (to - from)
+ *
+ * @param[in] from from value
+ * @param[in] to to value
+ * @param[in] t interpolant (amount)
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_mix(vec3 from, vec3 to, float t, vec3 dest) {
+ glm_vec3_lerp(from, to, t, dest);
+}
+
+/*!
+ * @brief linear interpolation between two vectors (clamped)
+ *
+ * formula: from + s * (to - from)
+ *
+ * @param[in] from from value
+ * @param[in] to to value
+ * @param[in] t interpolant (amount) clamped between 0 and 1
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_mixc(vec3 from, vec3 to, float t, vec3 dest) {
+ glm_vec3_lerpc(from, to, t, dest);
+}
+
+/*!
+ * @brief threshold function
+ *
+ * @param[in] edge threshold
+ * @param[in] x value to test against threshold
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_step(vec3 edge, vec3 x, vec3 dest) {
+ dest[0] = glm_step(edge[0], x[0]);
+ dest[1] = glm_step(edge[1], x[1]);
+ dest[2] = glm_step(edge[2], x[2]);
+}
+
+/*!
+ * @brief threshold function with a smooth transition (unidimensional)
+ *
+ * @param[in] edge0 low threshold
+ * @param[in] edge1 high threshold
+ * @param[in] x value to test against threshold
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_smoothstep_uni(float edge0, float edge1, vec3 x, vec3 dest) {
+ dest[0] = glm_smoothstep(edge0, edge1, x[0]);
+ dest[1] = glm_smoothstep(edge0, edge1, x[1]);
+ dest[2] = glm_smoothstep(edge0, edge1, x[2]);
+}
+
+/*!
+ * @brief threshold function with a smooth transition
+ *
+ * @param[in] edge0 low threshold
+ * @param[in] edge1 high threshold
+ * @param[in] x value to test against threshold
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_smoothstep(vec3 edge0, vec3 edge1, vec3 x, vec3 dest) {
+ dest[0] = glm_smoothstep(edge0[0], edge1[0], x[0]);
+ dest[1] = glm_smoothstep(edge0[1], edge1[1], x[1]);
+ dest[2] = glm_smoothstep(edge0[2], edge1[2], x[2]);
+}
+
+/*!
+ * @brief smooth Hermite interpolation between two vectors
+ *
+ * formula: from + s * (to - from)
+ *
+ * @param[in] from from value
+ * @param[in] to to value
+ * @param[in] t interpolant (amount)
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_smoothinterp(vec3 from, vec3 to, float t, vec3 dest) {
+ vec3 s, v;
+
+ /* from + s * (to - from) */
+ glm_vec3_broadcast(glm_smooth(t), s);
+ glm_vec3_sub(to, from, v);
+ glm_vec3_mul(s, v, v);
+ glm_vec3_add(from, v, dest);
+}
+
+/*!
+ * @brief smooth Hermite interpolation between two vectors (clamped)
+ *
+ * formula: from + s * (to - from)
+ *
+ * @param[in] from from value
+ * @param[in] to to value
+ * @param[in] t interpolant (amount) clamped between 0 and 1
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_smoothinterpc(vec3 from, vec3 to, float t, vec3 dest) {
+ glm_vec3_smoothinterp(from, to, glm_clamp_zo(t), dest);
+}
+
+/*!
+ * @brief swizzle vector components
+ *
+ * you can use existing masks e.g. GLM_XXX, GLM_ZYX
+ *
+ * @param[in] v source
+ * @param[in] mask mask
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_vec3_swizzle(vec3 v, int mask, vec3 dest) {
+ vec3 t;
+
+ t[0] = v[(mask & (3 << 0))];
+ t[1] = v[(mask & (3 << 2)) >> 2];
+ t[2] = v[(mask & (3 << 4)) >> 4];
+
+ glm_vec3_copy(t, dest);
+}
+
+/*!
+ * @brief vec3 cross product
+ *
+ * this is just convenient wrapper
+ *
+ * @param[in] a source 1
+ * @param[in] b source 2
+ * @param[out] d destination
+ */
+CGLM_INLINE
+void
+glm_cross(vec3 a, vec3 b, vec3 d) {
+ glm_vec3_cross(a, b, d);
+}
+
+/*!
+ * @brief vec3 dot product
+ *
+ * this is just convenient wrapper
+ *
+ * @param[in] a vector1
+ * @param[in] b vector2
+ *
+ * @return dot product
+ */
+CGLM_INLINE
+float
+glm_dot(vec3 a, vec3 b) {
+ return glm_vec3_dot(a, b);
+}
+
+/*!
+ * @brief normalize vec3 and store result in same vec
+ *
+ * this is just convenient wrapper
+ *
+ * @param[in, out] v vector
+ */
+CGLM_INLINE
+void
+glm_normalize(vec3 v) {
+ glm_vec3_normalize(v);
+}
+
+/*!
+ * @brief normalize vec3 to dest
+ *
+ * this is just convenient wrapper
+ *
+ * @param[in] v source
+ * @param[out] dest destination
+ */
+CGLM_INLINE
+void
+glm_normalize_to(vec3 v, vec3 dest) {
+ glm_vec3_normalize_to(v, dest);
+}
+
+/*!
+ * @brief Create three dimensional vector from pointer
+ *
+ * @param[in] src pointer to an array of floats
+ * @param[out] dest destination vector
+ */
+CGLM_INLINE
+void
+glm_vec3_make(const float * __restrict src, vec3 dest) {
+ dest[0] = src[0];
+ dest[1] = src[1];
+ dest[2] = src[2];
+}
+
+/*!
+ * @brief a vector pointing in the same direction as another
+ *
+ * orients a vector to point away from a surface as defined by its normal
+ *
+ * @param[in] n vector to orient
+ * @param[in] v incident vector
+ * @param[in] nref reference vector
+ * @param[out] dest oriented vector, pointing away from the surface
+ */
+CGLM_INLINE
+void
+glm_vec3_faceforward(vec3 n, vec3 v, vec3 nref, vec3 dest) {
+ if (glm_vec3_dot(v, nref) < 0.0f) {
+ /* N is facing away from I */
+ glm_vec3_copy(n, dest);
+ } else {
+ /* N is facing towards I, negate it */
+ glm_vec3_negate_to(n, dest);
+ }
+}
+
+/*!
+ * @brief reflection vector using an incident ray and a surface normal
+ *
+ * @param[in] v incident vector
+ * @param[in] n normalized normal vector
+ * @param[out] dest reflection result
+ */
+CGLM_INLINE
+void
+glm_vec3_reflect(vec3 v, vec3 n, vec3 dest) {
+ vec3 temp;
+ glm_vec3_scale(n, 2.0f * glm_vec3_dot(v, n), temp);
+ glm_vec3_sub(v, temp, dest);
+}
+
+/*!
+ * @brief computes refraction vector for an incident vector and a surface normal.
+ *
+ * calculates the refraction vector based on Snell's law. If total internal reflection
+ * occurs (angle too great given eta), dest is set to zero and returns false.
+ * Otherwise, computes refraction vector, stores it in dest, and returns true.
+ *
+ * @param[in] v normalized incident vector
+ * @param[in] n normalized normal vector
+ * @param[in] eta ratio of indices of refraction (incident/transmitted)
+ * @param[out] dest refraction vector if refraction occurs; zero vector otherwise
+ *
+ * @returns true if refraction occurs; false if total internal reflection occurs.
+ */
+CGLM_INLINE
+bool
+glm_vec3_refract(vec3 v, vec3 n, float eta, vec3 dest) {
+ float ndi, eni, k;
+
+ ndi = glm_vec3_dot(n, v);
+ eni = eta * ndi;
+ k = 1.0f - eta * eta + eni * eni;
+
+ if (k < 0.0f) {
+ glm_vec3_zero(dest);
+ return false;
+ }
+
+ glm_vec3_scale(v, eta, dest);
+ glm_vec3_mulsubs(n, eni + sqrtf(k), dest);
+ return true;
+}
+
+/*!
+ * @brief swap two vectors
+ * @param a the first vector to swap
+ * @param b the second vector to swap
+ */
+CGLM_INLINE void glm_vec3_swap(vec3 a, vec3 b) {
+ vec3 tmp;
+ glm_vec3_copy(a, tmp);
+ glm_vec3_copy(b, a);
+ glm_vec3_copy(tmp, b);
+}
+
+#endif /* cglm_vec3_h */