1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE bool glm_ray_triangle(vec3 origin,
vec3 direction,
vec3 v0,
vec3 v1,
vec3 v2,
float *d);
CGLM_INLINE bool glm_ray_sphere(vec3 origin,
vec3 dir,
vec4 s,
float * __restrict t1,
float * __restrict t2)
CGLM_INLINE void glm_ray_at(vec3 orig, vec3 dir, float t, vec3 point);
*/
#ifndef cglm_ray_h
#define cglm_ray_h
#include "vec3.h"
/*!
* @brief Möller–Trumbore ray-triangle intersection algorithm
*
* @param[in] origin origin of ray
* @param[in] direction direction of ray
* @param[in] v0 first vertex of triangle
* @param[in] v1 second vertex of triangle
* @param[in] v2 third vertex of triangle
* @param[in, out] d distance to intersection
* @return whether there is intersection
*/
CGLM_INLINE
bool
glm_ray_triangle(vec3 origin,
vec3 direction,
vec3 v0,
vec3 v1,
vec3 v2,
float *d) {
vec3 edge1, edge2, p, t, q;
float det, inv_det, u, v, dist;
const float epsilon = 0.000001f;
glm_vec3_sub(v1, v0, edge1);
glm_vec3_sub(v2, v0, edge2);
glm_vec3_cross(direction, edge2, p);
det = glm_vec3_dot(edge1, p);
if (det > -epsilon && det < epsilon)
return false;
inv_det = 1.0f / det;
glm_vec3_sub(origin, v0, t);
u = inv_det * glm_vec3_dot(t, p);
if (u < 0.0f || u > 1.0f)
return false;
glm_vec3_cross(t, edge1, q);
v = inv_det * glm_vec3_dot(direction, q);
if (v < 0.0f || u + v > 1.0f)
return false;
dist = inv_det * glm_vec3_dot(edge2, q);
if (d)
*d = dist;
return dist > epsilon;
}
/*!
* @brief ray sphere intersection
*
* returns false if there is no intersection if true:
*
* - t1 > 0, t2 > 0: ray intersects the sphere at t1 and t2 both ahead of the origin
* - t1 < 0, t2 > 0: ray starts inside the sphere, exits at t2
* - t1 < 0, t2 < 0: no intersection ahead of the ray ( returns false )
* - the caller can check if the intersection points (t1 and t2) fall within a
* specific range (for example, tmin < t1, t2 < tmax) to determine if the
* intersections are within a desired segment of the ray
*
* @param[in] origin ray origin
* @param[out] dir normalized ray direction
* @param[in] s sphere [center.x, center.y, center.z, radii]
* @param[in] t1 near point1 (closer to origin)
* @param[in] t2 far point2 (farther from origin)
*
* @returns whether there is intersection
*/
CGLM_INLINE
bool
glm_ray_sphere(vec3 origin,
vec3 dir,
vec4 s,
float * __restrict t1,
float * __restrict t2) {
vec3 dp;
float r2, ddp, dpp, dscr, q, tmp, _t1, _t2;
glm_vec3_sub(s, origin, dp);
ddp = glm_vec3_dot(dir, dp);
dpp = glm_vec3_norm2(dp);
/* compute the remedy term for numerical stability */
glm_vec3_mulsubs(dir, ddp, dp); /* dp: remedy term */
r2 = s[3] * s[3];
dscr = r2 - glm_vec3_norm2(dp);
if (dscr < 0.0f) {
/* no intersection */
return false;
}
dscr = sqrtf(dscr);
q = (ddp >= 0.0f) ? (ddp + dscr) : (ddp - dscr);
/*
include Press, William H., Saul A. Teukolsky,
William T. Vetterling, and Brian P. Flannery,
"Numerical Recipes in C," Cambridge University Press, 1992.
*/
_t1 = q;
_t2 = (dpp - r2) / q;
/* adjust t1 and t2 to ensure t1 is the closer intersection */
if (_t1 > _t2) {
tmp = _t1;
_t1 = _t2;
_t2 = tmp;
}
*t1 = _t1;
*t2 = _t2;
/* check if the closest intersection (t1) is behind the ray's origin */
if (_t1 < 0.0f && _t2 < 0.0f) {
/* both intersections are behind the ray, no visible intersection */
return false;
}
return true;
}
/*!
* @brief point using t by 𝐏(𝑡)=𝐀+𝑡𝐛
*
* @param[in] orig origin of ray
* @param[in] dir direction of ray
* @param[in] t parameter
* @param[out] point point at t
*/
CGLM_INLINE
void
glm_ray_at(vec3 orig, vec3 dir, float t, vec3 point) {
vec3 dst;
glm_vec3_scale(dir, t, dst);
glm_vec3_add(orig, dst, point);
}
#endif
|