1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
#include "camera.h"
#include "cglm/cam.h"
#include "cglm/io.h"
#include "cglm/mat4.h"
#include "cglm/util.h"
#include "cglm/vec3.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void camera_init(struct camera** camera) {
struct camera* cam = malloc(sizeof(struct camera));
memset(cam, 0, sizeof(struct camera));
vec3 camera_direction = { 0.0f, -1.0f, -5.0f };
vec3 camera_up = { 0.0f, 1.0f, 0.0f };
memcpy(cam->direction, camera_direction, sizeof(vec3));
memcpy(cam->up, camera_up, sizeof(vec3));
glm_mat4_identity(cam->view);
glm_mat4_identity(cam->perspective);
cam->fov = glm_rad(45.0f);
*camera = cam;
}
void camera_set_position(struct camera* camera, vec3 pos) {
memcpy(camera->position, pos, sizeof(vec3));
}
void camera_update(struct camera* camera, struct shader* shader) {
// vec3 camera = { 8.0f, 10.0f, 15.0f };
// vec3 cam_pivot = { 8.0f, 0.0f, -8.0f };
glm_look(camera->position, camera->direction, camera->up, camera->view);
// glm_lookat(camera, cam_pivot, axis_y, blk->view);
// glm_rotate_at(blk->view, cam_pivot, angle, axis_y);
// Projection (perspective) matrix
glm_perspective(camera->fov, 800.0f / 600.0f, 0.1f, -10.0f, camera->perspective);
set_uniform_mat4("view", shader, camera->view);
set_uniform_mat4("perspective", shader, camera->perspective);
// fprintf(stderr, "==== Block View ====\n");
// glm_mat4_print(camera->view, stderr);
// fprintf(stderr, "==== Block Perspective ====\n");
// glm_mat4_print(camera->perspective, stderr);
}
void camera_move(struct camera *camera, enum DIRECTION move) {
vec3 unit_direction = { 0 };
glm_normalize_to(camera->direction, unit_direction);
if (move == FORWARD) {
// Do nothing, we move in unit_direction direction
} else if (move == BACKWARD) {
// Go in the reverse direction
vec3 neg = { -1.0f, -1.0f, -1.0f };
glm_vec3_mul(neg, unit_direction, unit_direction);
} else if (move == LEFT) {
// Right hand rule - this will be on the left (negative)
glm_vec3_crossn(camera->up, unit_direction, unit_direction);
} else if (move == RIGHT) {
// Right hand rule - this will be on the righ (positive)
glm_vec3_crossn(unit_direction, camera->up, unit_direction);
}
float scale = 0.2f;
glm_vec3_scale(unit_direction, scale, unit_direction);
glm_vec3_add(camera->position, unit_direction, camera->position);
}
void camera_rotate(struct camera* camera, vec2 offset) {
vec3 axis = { 0 };
float rot_angle = glm_rad(1);
glm_vec3_crossn(camera->direction, camera->up, axis);
// Up and down rotation (pitch)
glm_vec3_rotate(camera->direction, -rot_angle * offset[1], axis);
// Left and right rotation (yaw)
glm_vec3_rotate(camera->direction, -rot_angle * offset[0], camera->up);
}
|