1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
#include "chunk.h"
#include "block.h"
#include "cglm/io.h"
#include "cglm/types.h"
#include "cglm/vec2.h"
#include "cglm/vec3.h"
#include "shader.h"
#include "util.h"
#include "world.h"
#include "cglm/cglm.h"
#include <junk/vector.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MIN(x, y) (x < y) ? x : y
#define MAX(x, y) (x > y) ? x : y
#define ARRAY_SIZE(array) (sizeof(array) / sizeof(array[0]))
void _chunk_plains_gen(struct chunk* chunk);
int chunk_gen(struct world* world, vec2 coord, struct chunk **chunk) {
*chunk = malloc(sizeof(struct chunk));
memcpy((*chunk)->coord,coord, sizeof(vec2));
// struct chunk* neighbor_top = { 0 };
// struct chunk* neighbor_bottom = { 0 };
// struct chunk* neighbor_left = { 0 };
// struct chunk* neighbor_right = { 0 };
// vec2 top = { 0, 1 };
// vec2 bottom = { 0, -1 };
// vec2 left = { -1, 0 };
// vec2 right = { 1, 0 };
// glm_vec2_add(top, coord, top);
// glm_vec2_add(bottom, coord, bottom);
// glm_vec2_add(left, coord, left);
// glm_vec2_add(right, coord, right);
// world_get_chunk(world, top, &neighbor_top);
// world_get_chunk(world, bottom, &neighbor_bottom);
// world_get_chunk(world, left, &neighbor_left);
// world_get_chunk(world, right, &neighbor_right);
// world_get_chunk(world, chunk->coord, &neighbor);
_chunk_plains_gen(*chunk);
// switch (chunk->biome) {
// case JUNK_BIOME_PLAINS:
// _
// break;
// default:
// break;
// }
return 0;
}
/**
* Helper function for _chunk_plains_gen. It calculates how much of a z-value needs
* to be added for a target point so it aligns with the line from poi with slope m.
* Here slope is the scale at which the gradient of the 3d line will operate.
* We know the (x, y) (top down) of a point. We need to figure out what the height should be.
* This ishow we use POIs to figure out the height. The vector line equation for this POI-target line is:
*
* vec3 slope = (normalize(target - poi), m). m is the rate of change of the z-value, which controls how steep slopes are.
*
* line = (vec3 poi) + (slope)*t where t is how many units of "slope" we want to move.
* Basically it means in the direction of target from POI, for every UNIT moved in (x,y), move m times in z-axis
*
* @param target Point for which we are trying to figure out the z
* @param poi Starting point of the line
* @param m units of z to change for every unit of (x,y)
* @param base_z This is a basic offset, which we just add to the aforementioned caluclated z
*/
float _chunk_plains_get_z(vec2 target, vec3 poi, float m, int base_z) {
vec2 unit = { (target[0] - poi[0]), (target[1] - poi[1]) };
glm_vec2_normalize(unit);
// Line direction vector
vec3 r = { unit[0], unit[1], m };
// r*t + poi = { x, y, z }, solve first for t, then get z
float t = 0;
// Parallel to X-axis
if (r[0] == 0.0f && r[1] != 0.0f) {
t = (target[1] - poi[1]) / r[1];
}
// Parallel to Y-axis
else if (r[1] == 0.0f && r[0] != 0.0f) {
t = (target[0] - poi[0]) / r[0];
}
else if (r[0] != 0.0f && r[1] != 0.0f) {
// Non-parallel line, either X or y works
t = (target[0] - poi[0]) / r[0];
}
else {
//Else we are POI itself, no need to do anything. t will be zero and
//the value of z == poi[2]. We subtract -1 from base_z because
//otherwise the POI will be a single block at it's z, all others will
//always be strictly less than it. This levels the plains
base_z -= 1;
}
float z_off = poi[2] + t * r[2];
return MAX(base_z, base_z + z_off);
}
/**
* Check if a given block at coord in chunk is a block or not. It is useful to calculate neighbours
* of a block
*
* @param chunk Target chunk
* @param coord block to test in the target chunk
* @return 1 if there is a block at coordinates coord, 0 otherwise
*/
int _chunk_check_neighbor_block(struct world* world, struct chunk* chunk, vec3 coord) {
int x = coord[0];
int y = coord[1];
int z = coord[2];
// ==== Pre-checks for neighbor chunks =====
//
// If we are a boundary block (x,y only, don't care for z), check if there is a neighboring
// block in the neighboring chunk
if (x == -1.0) {
vec2 c = { 0 };
vec2 left = { -1.0f, 0.0f };
glm_vec2_add(left, chunk->coord, c);
int neighbor[] = { c[0], c[1] };
struct chunk* left_chunk = { 0 };
world_get_chunk(world, neighbor, &left_chunk);
// If not created, we don't care, it's not being rendered, so mark as no neighbor
// TODO: Previously had chunk->loaded == 0, but this causes a problem. When we move
// from one chunk to another, everything gets unloaded, and then we start loading everything.
// This means that sometimes because of order of evaluation a chunk might think it's neighbor
// isn't loaded even though it will be
if (left_chunk == NULL) {
return 0;
}
// Otherwise we check if the neighbor block exists
vec3 left_neighbor_block = { CHUNK_WIDTH - 1, y, z };
return _chunk_check_neighbor_block(world, left_chunk, left_neighbor_block);
}
if (x == CHUNK_WIDTH) {
vec2 c = { 0 };
vec2 right = { 1.0f, 0.0f };
glm_vec2_add(right, chunk->coord, c);
int neighbor[] = { c[0], c[1] };
struct chunk* right_chunk = { 0 };
world_get_chunk(world, neighbor, &right_chunk);
// If unloaded, we don't care, it's not being rendered, so mark as no neighbor
if (right_chunk == NULL) {
return 0;
}
// Otherwise we check if the neighbor block exists
vec3 left_neighbor_block = { 0, y, z };
return _chunk_check_neighbor_block(world, right_chunk, left_neighbor_block);
}
if (y == -1.0) {
vec2 c = { 0 };
vec2 bottom = { 0.0f, -1.0f };
glm_vec2_add(bottom, chunk->coord, c);
int neighbor[] = { c[0], c[1] };
struct chunk* bottom_chunk = { 0 };
world_get_chunk(world, neighbor, &bottom_chunk);
// If unloaded, we don't care, it's not being rendered, so mark as no neighbor
if (bottom_chunk == NULL) {
return 0;
}
// Otherwise we check if the neighbor block exists
vec3 left_neighbor_block = { x, CHUNK_LENGTH - 1, z };
return _chunk_check_neighbor_block(world, bottom_chunk, left_neighbor_block);
}
if (y == CHUNK_LENGTH) {
vec2 c = { 0 };
vec2 top = { 0.0f, 1.0f };
glm_vec2_add(top, chunk->coord, c);
int neighbor[] = { c[0], c[1] };
struct chunk* top_chunk = { 0 };
world_get_chunk(world, neighbor, &top_chunk);
// If unloaded, we don't care, it's not being rendered, so mark as no neighbor
if (top_chunk == NULL) {
return 0;
}
// Otherwise we check if the neighbor block exists
vec3 left_neighbor_block = { x, 0, z };
return _chunk_check_neighbor_block(world, top_chunk, left_neighbor_block);
}
if (x < 0 || y < 0 || z < 0) {
return 0;
}
if (x >= CHUNK_WIDTH || y >= CHUNK_LENGTH || z >= CHUNK_HEIGHT) {
return 0;
}
// Air block
if (chunk->blocks[x][y][z] == NULL) {
return 0;
}
return 1;
}
/**
* Basic Plains chunk generation
* Algorithm: Pick 2 points of interest (POI). These points will either be elevations or depressions.
* Each block will get a invisible "offset" value based on their distance from the chosen point.
* Chosen point height itself will range from some non zero value to another, plus in negative.
* The offset value determines how block heights are created
*
*/
void _chunk_plains_gen(struct chunk* chunk) {
// ============ KNOBS ============
// Minimum ground
int z = 20;
// Min POI block height
int poi_min = 23;
// Max POI block height
int poi_max = 25;
// Descent/Ascent rate
float m = -.5;
memset(chunk->blocks, 0, CHUNK_HEIGHT * CHUNK_LENGTH * CHUNK_WIDTH * sizeof(struct block*));
// X, Y, POI Height
vec3 poi1 = { rand() % CHUNK_WIDTH, rand() % CHUNK_LENGTH, poi_min + (rand() % (poi_max - poi_min))};
vec3 poi2 = { rand() % CHUNK_WIDTH, rand() % CHUNK_LENGTH, -poi_min + (rand() % (poi_max - poi_min))};
for (int x = 0; x < CHUNK_WIDTH; x++) {
for (int y = 0; y < CHUNK_LENGTH; y++) {
// Minimum z height
// Interpolation formula - simple linear
vec2 target = { x, y };
float z1 = _chunk_plains_get_z(target, poi1, m, z);
float z2 = _chunk_plains_get_z(target, poi2, -m, z);
int z_final = (z1 + z2) / 2;
for (int h = 0; h < z_final; h++) {
struct block* blk = malloc(sizeof(struct block));
// Adjust block coordinates with global chunk coordinates
block_init(blk, BLOCK_GRASS);
chunk->blocks[x][y][h] = blk;
}
}
}
}
int* _chunk_face_order_add(int* face_order, int size, int idx) {
int* buf = malloc(size);
memcpy(buf, face_order, size);
for (int i = 0; i < size / sizeof(int); i++) {
buf[i] += idx;
}
return buf;
}
float* _chunk_face_add(float* face, int size, vec3 pos) {
// "Hack" to update the face coords,
// glm_vec3_add just does a[0] = a[0] + b[0], so using
// offsets will work
int unit = 8;
float* buf = malloc(size);
memcpy(buf, face, size);
glm_vec3_add(buf, pos, buf);
glm_vec3_add(buf + unit, pos, buf + unit);
glm_vec3_add(buf + 2 * unit, pos, buf + 2 * unit);
glm_vec3_add(buf + 3 * unit, pos, buf + 3 * unit);
return buf;
}
/**
* Two step function:
* 1. Generate mesh based on neighboring block data
* 2. Send data to GPU
*
* NOTE: GPU
*/
void chunk_load(struct world* world, struct chunk *chunk, int coord[2]) {
// If we are already loaded, no need to do any GPU work at all. Just update the coordinates
if (chunk->loaded == 1) {
vec3 translation = {CHUNK_WIDTH * coord[0], 0, - (CHUNK_LENGTH * coord[1])};
// Set the matrix for world coordinate translation
glm_mat4_identity(chunk->model);
glm_translate(chunk->model, translation);
chunk->loaded = 1;
chunk->staged_for_load = 0;
return;
}
// fprintf(stderr, "Loaded chunk (%d, %d)\n", coord[0], coord[1]);
// ================ OpenGL work ================
// Initalize vertices and vertex order vectors. These will be dynamically
// sized buffer data we send to the GPU
struct vector* vertices;
struct vector* vertex_order;
vector_init(&vertices);
vector_init(&vertex_order);
// =============== Face Data ===================
float front_face[] = {
1.0f, 1.0f, 0.0f, // top-right
0.0f, 0.0f, 1.0f, // Front normal
1.0f, 1.0f,
0.0f, 1.0f, 0.0f, // top-left
0.0f, 0.0f, 1.0f, // Front normal
0.0f, 1.0f,
0.0f, 0.0f, 0.0f, // bottom-left
0.0f, 0.0f, 1.0f, // Front normal
0.0f, 0.0f,
1.0f, 0.0f, 0.0f, // bottom-right
0.0f, 0.0f, 1.0f, // Front normal
1.0f, 0.0f,
};
float back_face[] = {
0.0f, 1.0f, -1.0f, // top-left (back plane)
0.0f, 0.0f, -1.0f, // Back normal
0.0f, 1.0f,
1.0f, 1.0f, -1.0f, // top-right (back plane)
0.0f, 0.0f, -1.0f, // Back normal
1.0f, 1.0f,
1.0f, 0.0f, -1.0f, // bottom-right (back plane)
0.0f, 0.0f, -1.0f, // Back normal
1.0f, 0.0f,
0.0f, 0.0f, -1.0f, // bottom-left (back plane)
0.0f, 0.0f, -1.0f, // Back normal
0.0f, 0.0f,
};
float right_face[] = {
1.0f, 1.0f, -1.0f, // top-right (back plane)
1.0f, 0.0f, 0.0f, // Right normal
1.0f, 1.0f,
1.0f, 1.0f, 0.0f, // top-right
1.0f, 0.0f, 0.0f, // Right normal
0.0f, 1.0f,
1.0f, 0.0f, 0.0f, // bottom-right
1.0f, 0.0f, 0.0f, // Right normal
0.0f, 0.0f,
1.0f, 0.0f, -1.0f, // bottom-right (back plane)
1.0f, 0.0f, 0.0f, // Right normal
1.0f, 0.0f,
};
float left_face[] = {
0.0f, 1.0f, 0.0f, // top-left
-1.0f, 0.0f, 0.0f, // Left normal
1.0f, 1.0f,
0.0f, 1.0f, -1.0f, // top-left (back plane)
-1.0f, 0.0f, 0.0f, // Left normal
0.0f, 1.0f,
0.0f, 0.0f, -1.0f, // bottom-left (back plane)
-1.0f, 0.0f, 0.0f, // Left normal
0.0f, 0.0f,
0.0f, 0.0f, 0.0f, // bottom-left
-1.0f, 0.0f, 0.0f, // Left normal
1.0f, 0.0f,
};
float top_face[] = {
1.0f, 1.0f, -1.0f, // top-right (back plane)
0.0f, 1.0f, 0.0f, // Top normal
1.0f, 1.0f,
0.0f, 1.0f, -1.0f, // top-left (back plane)
0.0f, 1.0f, 0.0f, // Top normal
0.0f, 1.0f,
0.0f, 1.0f, 0.0f, // top-left
0.0f, 1.0f, 0.0f, // Top normal
0.0f, 0.0f,
1.0f, 1.0f, 0.0f, // top-right
0.0f, 1.0f, 0.0f, // Top normal
1.0f, 0.0f,
};
float bottom_face[] = {
1.0f, 0.0f, -1.0f, // bottom-right (back plane)
0.0f, -1.0f, 0.0f, // Bottom normal
1.0f, 1.0f,
0.0f, 0.0f, -1.0f, // bottom-left (back plane)
0.0f, -1.0f, 0.0f, // Bottom normal
0.0f, 1.0f,
0.0f, 0.0f, 0.0f, // bottom-left
0.0f, -1.0f, 0.0f, // Bottom normal
0.0f, 0.0f,
1.0f, 0.0f, 0.0f, // bottom-right
0.0f, -1.0f, 0.0f, // Bottom normal
1.0f, 0.0f,
};
int vertex_draw_order[] = {
1, 2, 3, 3, 0, 1, // CCW 2-triangles (quad)
};
// ============= Face detection algorithm =============
int vertex_index = 0;
int v_count[6] = { 0 };
int blk_c = 0;
for (int x = 0; x < CHUNK_WIDTH; x++) {
for (int y = 0; y < CHUNK_LENGTH; y++) {
for (int z = 0; z < CHUNK_HEIGHT; z++) {
struct block* blk = chunk->blocks[x][y][z];
// If not air block
if (blk != NULL) {
blk_c += 1;
// Position of block in OpenGL coords
// NOTE: OpenGL FLIP
vec3 pos = { x, z, -y };
vec3 front = { x, y - 1, z };
vec3 back = { x, y + 1, z };
vec3 right = { x + 1, y, z };
vec3 left = { x - 1, y, z };
vec3 top = { x, y, z + 1 };
vec3 bottom = { x, y, z - 1 };
if (_chunk_check_neighbor_block(world, chunk, front) == 0) {
VECTOR_INSERT(vertices, _chunk_face_add(front_face,
sizeof(front_face), pos));
VECTOR_INSERT(vertex_order,
_chunk_face_order_add(vertex_draw_order,
sizeof(vertex_draw_order), vertex_index));
vertex_index += 4;
v_count[0] += 1;
}
if (_chunk_check_neighbor_block(world, chunk, back) == 0) {
VECTOR_INSERT(vertices, _chunk_face_add(back_face,
sizeof(back_face), pos));
VECTOR_INSERT(vertex_order,
_chunk_face_order_add(vertex_draw_order,
sizeof(vertex_draw_order), vertex_index));
vertex_index += 4;
v_count[1] += 1;
}
if (_chunk_check_neighbor_block(world, chunk, right) == 0) {
VECTOR_INSERT(vertices, _chunk_face_add(right_face,
sizeof(right_face), pos));
VECTOR_INSERT(vertex_order,
_chunk_face_order_add(vertex_draw_order,
sizeof(vertex_draw_order), vertex_index));
vertex_index += 4;
v_count[2] += 1;
}
if (_chunk_check_neighbor_block(world, chunk, left) == 0) {
VECTOR_INSERT(vertices, _chunk_face_add(left_face,
sizeof(left_face), pos));
VECTOR_INSERT(vertex_order,
_chunk_face_order_add(vertex_draw_order,
sizeof(vertex_draw_order), vertex_index));
vertex_index += 4;
v_count[3] += 1;
}
if (_chunk_check_neighbor_block(world, chunk, top) == 0) {
VECTOR_INSERT(vertices, _chunk_face_add(top_face,
sizeof(top_face), pos));
VECTOR_INSERT(vertex_order,
_chunk_face_order_add(vertex_draw_order,
sizeof(vertex_draw_order), vertex_index));
vertex_index += 4;
v_count[4] += 1;
}
if (_chunk_check_neighbor_block(world, chunk, bottom) == 0) {
VECTOR_INSERT(vertices, _chunk_face_add(bottom_face,
sizeof(bottom_face), pos));
VECTOR_INSERT(vertex_order,
_chunk_face_order_add(vertex_draw_order,
sizeof(vertex_draw_order), vertex_index));
vertex_index += 4;
v_count[5] += 1;
}
}
}
}
}
float tmp_vertex[vector_length(vertices) * sizeof(front_face)];
int tmp_order[vector_length(vertex_order) * sizeof(vertex_draw_order)];
// fprintf(stderr, "Chunk blk_c: %d v_s: %d, v_o: %d\n", blk_c, vector_length(vertices) / 6, vector_length(vertex_order) / 6);
// fprintf(stderr, "%d|%d|%d|%d|%d|%d|", v_count[0], v_count[1], v_count[2], v_count[3], v_count[4], v_count[5]);
for (int i = 0; i < vector_length(vertices); i++) {
float* face = vector_get(vertices, i);
// Copy from heap mem to tmp buffer, and then free
memcpy(tmp_vertex + (i*ARRAY_SIZE(front_face)), face, sizeof(front_face));
free(face);
}
for (int i = 0; i < vector_length(vertex_order); i++) {
int* order = vector_get(vertex_order, i);
// Copy from heap mem to tmp buffer, and then free
memcpy(tmp_order + (i*ARRAY_SIZE(vertex_draw_order)), order, sizeof(vertex_draw_order));
free(order);
}
// Create VBO and EBO buffer data
// VBO EBO size is sizeof() because we want TOTAL BYTES (float * count)
create_vbo(&chunk->_vbo, (void*)tmp_vertex, sizeof(tmp_vertex));
create_ebo(&chunk->_ebo, (void*)tmp_order, sizeof(tmp_order));
// Here we only want ARRAY_SIZE, not float * count
chunk->vertex_count = vector_length(vertex_order) * ARRAY_SIZE(vertex_draw_order);
glGenVertexArrays(1, &chunk->_vao);
glBindVertexArray(chunk->_vao);
// Enable 3 attribs - position normals texture
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnableVertexAttribArray(2);
// set vao_buffer to pos buffer obj
glBindBuffer(GL_ARRAY_BUFFER, chunk->_vbo);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), 0);
// set vao_buffer to normals buffer obj
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (GLvoid*)(3*sizeof(float)));
// set vao_buffer to texture buffer obj
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (GLvoid*)(6*sizeof(float)));
// Set EBO to the vertex_order
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, chunk->_ebo);
//NOTE: This is important, otherwise with multiple chunk_load calls, it
//creates a segfault since the bindings get all messed up. Why it gets
//messed up? Let's say we make 2 chunks. Chunk 1 creates VBOs, then VAO,
//then binds everything. Now VAO is still bound. Chunk 2 init starts. First
//call is create_vbo. Since VAO is already bound, it gets bound to the OLD
//VAO!! Always clear before use.
glBindVertexArray(0);
// Translation to WORLD units
// NOTE: OpenGL FLIP
vec3 translation = {CHUNK_WIDTH * coord[0], 0, - (CHUNK_LENGTH * coord[1])};
// Set the matrix for world coordinate translation
glm_mat4_identity(chunk->model);
glm_translate(chunk->model, translation);
chunk->loaded = 1;
chunk->staged_for_load = 0;
}
void chunk_draw(struct chunk* chunk, struct shader* shader, struct texture* texture) {
glBindVertexArray(chunk->_vao);
set_uniform_mat4("model", shader, chunk->model);
glDrawElements(GL_TRIANGLES, chunk->vertex_count, GL_UNSIGNED_INT, 0);
glBindVertexArray(0);
}
void chunk_unload(struct chunk* chunk) {
chunk->loaded = 0;
// Clear VBO data
glDeleteBuffers(1, &chunk->_vbo);
// Clear EBO data
glDeleteBuffers(1, &chunk->_ebo);
// Clear VAO
glDeleteVertexArrays(1, &chunk->_vao);
chunk->loaded = 0;
chunk->staged_for_load = 0;
}
// Regenerate chunk data
void chunk_update(struct chunk *chunk) {
}
|